On Orthogonal Labelling for the Orthogonal Covering of the Circulant Graphs

El-Shanawany, R. * and El-Mesady, A.
Department of Physics and Engineering Mathematics, Faculty of Electronic Engineering, Menoufia University, Egypt.

E-mail: ramadan_elshanawany 380@yahoo.com

* Corresponding author

Received: 27 April 2016
Accepted: 16 May 2018

Abstract

If we have two Abelian groups, then we can use the cartesian product of these two groups for labelling the circulants and this manages us to find the cyclic orthogonal double covers (CODCs) of these circulants by certain infinite graph classes, such as $K_{1,2 m-2} \cup K_{1,2 m(n-1)}, K_{1,4(n-1)} \cup$ $K_{1,4(m-1)} \cup K_{1,4(m-1)(n-1)}$ with m and $n>1$, and by other certain defined graphs in this paper.

Keywords: Circulant graph, Orthogonal double cover, Orthogonal labelling.

1. Introduction

Let \mathcal{B} be Abelian group with identity 0 and S be a subset of \mathcal{B} satisfying $0 \notin S$ and $S=-S$, hence $s \in S$ iff $-s \in S$. The Cayley graph Cay $(\mathcal{B} ; S)$ on \mathcal{B} with connection set S is defined as follows (i) the vertices are the elements of \mathcal{B} and (ii) there is an edge joining u and v if and only if $u=s+v$ for some $s \in S$. The circulant graphs are considered as Cayley graphs on cyclic groups.

The notation $\operatorname{Circ}(n ; S)$ is used for the circulant graph of order n with connection set S. The circulant graph, $\operatorname{Circ}(7 ;\{2,3,4,5\})$ is given in Figure 1 for more illustration.

The concept of the orthogonal double cover (ODC) of any graph J can be interpreted by supposing that J be a graph having m vertices and $\mathcal{J}=$ $\left\{B_{0}, B_{1}, \ldots, B_{m-1}\right\}$ be a collection of m isomorphic subgraphs of J.

We consider \mathcal{J} an ODC of J by B iff (i) All the edges of J are exactly repeated twice in \mathcal{J} and (ii) If α and β are adjacent vertices in J, then B_{α} and B_{β} have one common edge. Our results in this paper are concerned with the cyclic orthogonal double covers (CODCs) of circulant graphs. For the CODCs definition, see Gronau et al. (1997). Many papers were introduced for the cyclic orthogonal double covers of circulant graphs, see Sampathkumar and Srinivassan (2011), El-Shanawany and Shabana (2014).

The orthogonal labelling notion was introduced by Gronau et al. (1997). For the graph $B=(V, E)$ having $m-1$ edges, a one-to-one function Φ : $V(B) \longrightarrow \mathbb{Z}_{m}$ is an orthogonal labelling of B if (i) B has two edges of length $d \in\left\{1,2, \ldots,\left\lfloor\frac{(m-1)}{2}\right\rfloor\right\}$ exactly, and also one edge of length $m / 2$ where m is even number, (ii) $\left\{r(d): d \in\left\{1, \ldots,\left\lfloor\frac{(m-1)}{2}\right\rfloor\right\}\right\}=\left\{1, \ldots,\left\lfloor\frac{(m-1)}{2}\right\rfloor\right\}$, where $r(d)$ is the rotation-distance between two edges of the same length.

The following Theorem introduces the relation between the CODCs of the complete graphs and their orthogonal labellings and Theorem 1.1 was generalized by Theorem 1.2

Theorem 1.1. (Gronau et al. (1997)). The CODC of the complete graph by a graph B exists iff B has an orthogonal labelling.

Theorem 1.2. (Sampathkumar and Srinivassan (2011)). A CODC of Circ $\left(m ;\left\{l_{1}, l_{2}\right.\right.$, $\left.\ldots, l_{k}\right\}$) by a graph B exists iff B has an orthogonal $\left\{l_{1}, l_{2}, \ldots, l_{k}\right\}$-labellings.

Figure 1: The circulant graph $\operatorname{Circ}(7 ;\{2,3,4,5\})$.

In the following Section, the notation \star is used for referring to the normal multiplication, the notation \times for the cartesian products and $a b$ for $(a, b) \in \mathbb{Z}_{m_{1}} \times \mathbb{Z}_{m_{2}}$. In El-Shanawany et al. (2013), the new cartesian product notion for finding the ODCs of $K_{m, m}$ was introduced, and it is easy to notice that there is a relation between this method and the graph lift, for more illustration, see Shang (2012). Theorems 1.1, 1.2 are helpful tools for the following work. Since there is a bijective function $\Psi: \mathbb{Z}_{m_{1}} \times \mathbb{Z}_{m_{2}} \longrightarrow \mathbb{Z}_{m_{1 \star} m_{2}}$ defined by $\Psi(a b)=m_{2} a+b ; a \in \mathbb{Z}_{m_{1}}, b \in \mathbb{Z}_{m_{2}}, u v>w y$ if $u>w$ or if $u=w$ and $v>y$ where $u v, w y \in \mathbb{Z}_{m_{1}} \times \mathbb{Z}_{m_{2}}$ and $u \star v, w \star y \in \mathbb{Z}_{m_{1} \star m_{2}}$. Let $\mathbb{Z}_{m_{1}}=\left\{0,1, \ldots, m_{1}-1\right\}$ and $\mathbb{Z}_{m_{2}}=\left\{0,1, \ldots, m_{2}-1\right\}$, then the circulant graph $\operatorname{Circ}\left(m_{1} \star m_{2} ; Y\right)$ has a vertex set $\mathbb{Z}_{m_{1}} \times \mathbb{Z}_{m_{2}} ; Y \subset \mathbb{Z}_{m_{1}} \times \mathbb{Z}_{m_{2}}$. We say that the vertices $u v$ and $w y$ are adjacent iff $u v-w y= \pm(\gamma \delta) ; \gamma \delta \in Y$, and u, w, and γ are calculated modulo m_{1} and v, y, and δ are calculated modulo m_{2}. In $\operatorname{Circ}\left(m_{1} \star m_{2} ; Y\right)$ the length of the edge $\{u v, w y\}$ is $\min \left\{|u v-w y|, m_{1} m_{2}-\right.$ $|u v-w y|\}$. The rotation-distance $r(\gamma \delta)$ between E_{1} and E_{2} where $E_{1}=\{x y, z t\}$ and $E_{2}=\{o p, q r\}$ are two edges having similar lengths, $\gamma \delta$ in $\operatorname{Circ}\left(m_{1} \star m_{2} ; Y\right)$ is $r(\gamma \delta)=\min \left\{i j, k l:\{x y+i j, z t+i j\}=E_{2},\{o p+k l, q r+k l\}=E_{1}\right\}$, where additions and differences for x, z, o, and q are calculated modulo m_{1} and for y, t, p, and r are calculated modulo m_{2}. The rotation-distance for the two adjacent edges with the same length $\gamma \delta$ is $\gamma \delta$.

2. The cartesian product and the CODCs of circulant graphs

For the subgraph B of $\operatorname{Circ}\left(n_{1} \star n_{2} ; Y\right)$, a one-to-one function Φ : $V(B) \longrightarrow \mathbb{Z}_{n_{1}} \times \mathbb{Z}_{n_{2}}$ is an orthogonal Y-labelling of B if the graph B verifies
some conditions according to one of the subcases appeared through the proof of Theorem 2.1. In this paper we use only the subcases 2.1 and 4.1 of Theorem 3 , so we introduce the proof of these subcases only as follows.

Theorem 2.1. (El-Shanawany and El-Mesady (2014)). A CODC of $\operatorname{Circ}\left(n_{1} \star\right.$ $\left.n_{2} ; Y\right)$ by a graph B exists iff there is an orthogonal Y-labelling of B.

Proof. Case 2. Let $n_{1}>1$ be odd and n_{2} be even.
Subcase 2.1. For $n_{2}>2$, we find that:
(a) For every $\alpha \beta \in X_{1}$:
$X_{1}=\left\{\begin{array}{ccc}\alpha 0 & : & 1 \leq \alpha \leq\left\lfloor\frac{n_{1}}{2}\right\rfloor, \\ \alpha \beta & : & 0 \leq \alpha \leq \frac{1}{2}\left(n_{1}-1\right), 1 \leq \beta \leq \frac{n_{2}}{2}-1, \\ n_{1} n_{2}-\alpha \beta & : & \frac{1}{2}\left(n_{1}-1\right)<\alpha<n_{1}, 1 \leq \beta \leq \frac{n_{2}}{2}-1, \\ \alpha \frac{n_{2}}{2} & : & 1 \leq \alpha \leq\left\lfloor\frac{n_{1}}{2}\right\rfloor .\end{array}\right.$
G contains exactly two edges of length $\alpha \beta$, and exactly one edge of length $X_{2}=\left\{0 \frac{n_{2}}{2}\right\}$,
(b) $\left\{r(\alpha \beta): \alpha \beta \in X_{1}\right\}=X_{1}$, then $X=X_{1} \cup X_{2}$.

Case 4. Let n_{1} and n_{2} be even.
Subcase 4.1. For $n_{1}>2$ and $n_{2}>2$, we find that:
(a) For every $\alpha \beta \in X_{1}: X_{1}=\left\{\begin{array}{ccc}\alpha \beta & : & \alpha \in\left\{0, \frac{n_{1}}{2}\right\}, 1 \leq \beta \leq \frac{n_{2}}{2}-1 \text {, } \\ \alpha \beta & : & 1 \leq \alpha \leq \frac{n_{1}}{2}-1, \beta \in \mathbb{Z}_{n_{2}} .\end{array}\right.$
G contains exactly two edges of length $\alpha \beta$, and exactly one edge of length $X_{2}=\left\{\frac{n_{1}}{2} 0,0 \frac{n_{2}}{2}, \frac{n_{1}}{2} \frac{n_{2}}{2}\right\}$,
(b) $\left\{r(\alpha \beta): \alpha \beta \in X_{1}\right\}=X_{1}$, then $X=X_{1} \cup X_{2}$.

Note: In Theorems 2.2 and 2.3 , we have considered the circulant graphs as complete graphs.

Let m be a positive integer, $\operatorname{gcd}(m, 3)=1, n \geq 2, k=l+m$, and $l \in$ \mathbb{Z}_{m}. Then we consider the graph $H_{1}^{m, n}$ to be the graph with the edge set: $E\left(H_{1}^{m, n}\right)=\left\{(0 l, 0 l+i j): i j \in Y_{1} \backslash\{00\}\right\} \cup\left\{(0 k, 0 k+i j): i j \in Y_{2}\right\} \cup\{(\delta \gamma, n w):$ $\left.\delta \in \mathbb{Z}_{2 n} \backslash\{0, n\}, \gamma \in\{2 l, 2(l+m)\}, w \in\{l,(l+m)\}\right\}$, where $Y_{1}=A_{1} \times A_{2}, Y_{2}=$ $A_{1} \times A_{3}, A_{1}=\{0, n\}, A_{2}=\{l, l+2 m\}$, and $A_{3}=\{l+m, l+3 m\}$. It is easy to prove that, $\left|E\left(H_{1}^{m, n}\right)\right|=8 m n-1$ and $\left|V\left(H_{1}^{m, n}\right)\right|=2 m(2 n+1)$.

Theorem 2.2. Let $n \geq 2$ and m be positive integers and $\operatorname{gcd}(m, 3)=1$. Then there is a $C O D C$ of $\operatorname{Circ}(8 n m ; X)$ by $H_{1}^{m, n}$ w.r.t. $\mathbb{Z}_{2 n} \times \mathbb{Z}_{4 m}$.

On Orthogonal Labelling for the Orthogonal Covering of the Circulant Graphs

Figure 2: CODC generating graph of $\operatorname{Circ}(16 ; X)$ by $H_{1}^{1,2}$ w.r.t. $\mathbb{Z}_{4} \times \mathbb{Z}_{4}$.

Proof. We define $\Phi: V\left(H_{1}^{m, n}\right) \longrightarrow \mathbb{Z}_{2 n} \times \mathbb{Z}_{4 m}$ by
$\Phi\left(V_{\alpha}\right)=\left\{\begin{array}{ccc}0 \alpha & : & 0 \leq \alpha \leq 2 m-1, \\ 0 \gamma & : & 2 m \leq \alpha \leq 3 m-1, \gamma=2(\alpha-m), \\ n \beta & : & 3 m \leq \alpha \leq 5 m-1, \beta=\alpha-3 m, \\ 2 \delta & : & 5 m \leq \alpha \leq 6 m-1, \delta=2(\alpha-4 m), \\ w \gamma & : & \alpha=i+(2 w+4) m, 1 \leq w \leq n-1, \gamma=2 i, 0 \leq i \leq 2 m-1, \\ x y & : & \alpha=i+(2 x+4) m-2 m, n+1 \leq x \leq 2 n-1, y=2 i, 0 \leq i \leq 2 m-1 .\end{array}\right.$
It is clear that $H_{1}^{m, n}$, and from Subcase 4.1 of Theorem 2.1,
(i) If $\alpha \beta \in X_{1}$;
$X_{1}=\left\{\begin{array}{ccc}\alpha \beta & : \alpha \in\{0, n\}, 1 \leq \beta \leq 2 m-1, \\ \alpha \beta & : & 1 \leq \alpha \leq n-1, \beta \in \mathbb{Z}_{4 m} .\end{array}\right.$
We found that, the length $\alpha \beta$ is repeated twice in $H_{1}^{m, n}$, and there is only one edge of length $X_{2}=\{n 0,0 \gamma, n \gamma: \gamma=2 m\}$,
(ii) $\left\{r(\alpha \beta): \alpha \beta \in X_{1}\right\}=X_{1}$, then $X=X_{1} \cup X_{2}$.

Theorem 2.2 can be illustrated by the following example, let $n=2, m=1$. Then there is a CODC of $\operatorname{Circ}(16 ; X)$ by $H_{1}^{1,2}$ w.r.t. $\mathbb{Z}_{4} \times \mathbb{Z}_{4}$, where $X=$ $\{01,02,10,11,12,13,20,21,22\}$ (see Figure 2).

Let $n \geq 2$ and $m>1$ be positive integers and m be odd, then suppose that $H_{2}^{m, n}$ is a graph with the edge set:

$$
\begin{aligned}
& \quad \begin{array}{l}
E\left(H_{2}^{m, n}\right)=\{(00, \gamma 0): 1 \leq \gamma \leq m-1\} \cup\{(0 n, \gamma 0): 0 \leq \gamma \leq m-1\} \cup \\
\{(01, \delta w)
\end{array} \\
& \quad 0 \leq \delta \leq m-1,2 \leq w \leq n\} \cup\{(0 k, \delta w): k=n+1,0 \leq \delta \leq m-1,2 \leq w \leq n\} .
\end{aligned}
$$

It is easy to prove that,

$$
\left|E\left(H_{2}^{m, n}\right)\right|=1+2\left(2\left\lfloor\frac{m}{2}\right\rfloor+m(n-1)\right) \text { and }\left|V\left(H_{2}^{m, n}\right)\right|=2 m+n .
$$

Theorem 2.3. Let $n \geq 2$ and $m>1$ be positive integers and m be odd, then there is a CODC of $\operatorname{Circ}(2 m n ; X)$ by $H_{2}^{m, n}$ w.r.t. $\mathbb{Z}_{m} \times \mathbb{Z}_{2 n}$.

Proof. We define $\Phi: V\left(H_{2}^{m, n}\right) \longrightarrow \mathbb{Z}_{m} \times \mathbb{Z}_{2 n}$ by

$$
\Phi\left(V_{\alpha}\right)=\left\{\begin{array}{ccc}
0 \alpha & : & 0 \leq \alpha \leq n+1 \\
\beta 0 & : & \alpha=\beta n+2,1 \leq \beta \leq m-1 \\
\gamma \delta & : & \gamma n+3 \leq \alpha \leq n(\gamma+1)+1, \delta=\alpha-(\gamma n+1), 1 \leq \gamma \leq m-1
\end{array}\right.
$$

It is clear that $H_{2}^{m, n}$, and from Subcase 2.1 of Theorem 2.1.
(i) If $\alpha \beta \in X_{1} ; X_{1}=\left\{\begin{array}{ccc}\alpha \beta & : & 1 \leq \alpha \leq\left\lfloor\frac{m}{2}\right\rfloor, \beta=\{0, n\}, \\ \alpha \beta & : & 0 \leq \alpha \leq \frac{1}{2}(m-1), 1 \leq \beta \leq n-1, \\ m \gamma-\alpha \beta & : & \frac{1}{2}(m+1) \leq \alpha \leq m-1,1 \leq \beta \leq n-1, \gamma=2 n .\end{array}\right.$

Then, we found that, the length $\alpha \beta$ is repeated twice in $H_{2}^{m, n}$, and there is only one edge of length $X_{2}=\{0 n\}, \quad$ (ii) $\left\{r(\alpha \beta): \alpha \beta \in X_{1}\right\}=X_{1}$, then $X=X_{1} \cup X_{2}$.

Theorem 2.3 can be illustrated by the following example, let $m=3, n=2$, then there is a CODC of $\operatorname{Circ}(12 ; X)$ by $H_{2}^{3,2} \cong K_{3,2} \cup^{02} K_{1,2,1}$ w.r.t. $\mathbb{Z}_{3} \times \mathbb{Z}_{4}$, where $X=\{01,02,10,11,12,13\}$ and $K_{3,2} \cup^{02} K_{1,2,1}$ means that the two graphs $K_{3,2}$ and $K_{1,2,1}$ share the vertex 02 (see Figure 3).

Note: In Theorems 2.4, 2.5, 2.6, and 2.7, we have constructed an ODC of circulant graphs, where $X_{2}=\emptyset, X=X_{1}$, and this can be proved from the edge set in each Theorem.

Let m be a positive integer, $\operatorname{gcd}(m, 3)=1, k=l+m$, and $l \in \mathbb{Z}_{m}$.

On Orthogonal Labelling for the Orthogonal Covering of the Circulant Graphs

Figure 3: CODC generating graph of $\operatorname{Circ}(12 ; X)$ by $H_{2}^{3,2} \cong K_{3,2} \cup^{02} K_{1,2,1}$ w.r.t. $\mathbb{Z}_{3} \times \mathbb{Z}_{4}$.

Then H_{3}^{m} is the graph with the edge set:
$E\left(H_{3}^{m}\right)=\left\{(0 l, 0 l+i j): i j \in Y_{1} \backslash\{00,0 \gamma, 20,2 \gamma: \gamma=2 m\}\right\} \cup\{(0 k, 0 k+i j):$ $\left.i j \in Y_{2}\right\} \cup\left\{(1 l, 1 l+i j): i j \in Y_{3}\right\} \cup\left\{(1 k, 1 k+i j): i j \in Y_{4}\right\} ; Y_{1}=A_{1} \times A_{2}, Y_{2}=$ $A_{1} \times A_{4}, Y_{3}=A_{3} \times A_{2}, Y_{4}=A_{3} \times A_{4}, A_{1}=\{0,2\}, A_{2}=\{l, l+2 m\}, A_{3}=$ $\{1,3\}, A_{4}=\{l+m, l+3 m\}$.

It is easy to prove that, $\left|E\left(H_{3}^{m}\right)\right|=4(4 m-1)$ and $\left|V\left(H_{3}^{m}\right)\right|=7 m$.
Theorem 2.4. Let m be a positive integer and $\operatorname{gcd}(m, 3)=1$, then there is a $C O D C$ of $\operatorname{Circ}(16 m ; X)$ by H_{3}^{m} w.r.t. $\mathbb{Z}_{4} \times \mathbb{Z}_{4 m}$.

Proof. We define $\Phi: V\left(H_{3}^{m}\right) \longrightarrow \mathbb{Z}_{4} \times \mathbb{Z}_{4 m}$ by

$$
\Phi\left(V_{\alpha}\right)=\left\{\begin{array}{ccc}
0 \alpha & : & 0 \leq \alpha \leq 2 m-1 \\
0 \delta & : & 2 m \leq \alpha \leq 3 m-1, \delta=2(\alpha-m) \\
1 \gamma & : & 3 m \leq \alpha \leq 5 m-1, \gamma=\alpha-3 m \\
2 w & : & 5 m \leq \alpha \leq 7 m-1, w=2(\alpha-5 m)
\end{array}\right.
$$

Figure 4: CODC generating graph of $\operatorname{Circ}(32 ; X)$ by $H_{3}^{2} \cong K_{3,4} \cup^{02} K_{4,4}$ w.r.t. $\mathbb{Z}_{4} \times \mathbb{Z}_{8}$.

It is clear that H_{3}^{m}, and from Subcase 2.1 of Theorem 2.1 .
(i) If $\alpha \beta \in X_{1}$;

$$
X_{1}=\left\{\begin{array}{lcc}
\alpha \beta & : & \alpha \in\{0,2\}, 1 \leq \beta \leq 2 m-1 \\
\alpha \beta & : & \alpha=1, \beta \in \mathbb{Z}_{4 m} .
\end{array}\right.
$$

Then, we found that, the length $\alpha \beta$ is repeated twice in H_{3}^{m} and $X_{2}=\emptyset$, (ii) $\left\{r(\alpha \beta): \alpha \beta \in X_{1}\right\}=X_{1}$, then $X=X_{1}$.

Theorem 2.4 can be illustrated by the following example, let $m=2$, then there is a CODC of $\operatorname{Circ}(32 ; X)$ by $H_{3}^{2} \cong K_{3,4} \cup^{02} K_{4,4}$ w.r.t. $\mathbb{Z}_{4} \times \mathbb{Z}_{8}$, where $X=\{01,02,03,21,22,23,10,11,12,13,14,15,16,17\}$ and $K_{3,4} \cup{ }^{02} K_{4,4}$ means that the two graphs $K_{3,4}$ and $K_{4,4}$ share the vertex 02 (see Figure 4 .

Let $n>1, m>1$ be positive integers and m be odd. Then $K_{1,2 m-2} \cup$ $K_{1,2 m(n-1)}$ is the graph with the edge set: $E\left(K_{1,2 m-2} \cup K_{1,2 m(n-1)}\right)$ $=\left\{(0 n, \delta \gamma): \delta \in \mathbb{Z}_{m}, \gamma \in \mathbb{Z}_{2 n} \backslash\{0, n\}\right\} \cup\left\{(00, \delta \gamma): \delta \in \mathbb{Z}_{m} \backslash\{0\}, \gamma \in\{0, n\}\right\}$. It is easy to prove that, $\left|E\left(K_{1,2 m-2} \cup K_{1,2 m(n-1)}\right)\right|=4\left\lfloor\frac{m}{2}\right\rfloor+2 m(n-1)$ and $\left|V\left(K_{1,2 m-2} \cup K_{1,2 m(n-1)}\right)\right|=2 m n$.

Theorem 2.5. Let $n>1, m>1$ be positive integers and m be odd, then there is a $C O D C$ of $\operatorname{Circ}(2 m n ; X)$ by $K_{1,2 m-2} \cup K_{1,2 m(n-1)}$ w.r.t. $\mathbb{Z}_{m} \times \mathbb{Z}_{2 n}$.

On Orthogonal Labelling for the Orthogonal Covering of the Circulant Graphs

Figure 5: CODC generating graph of $\operatorname{Circ}(12 ; X)$ by $K_{1,4} \cup K_{1,6}$ w.r.t. $\mathbb{Z}_{3} \times \mathbb{Z}_{4}$.

Proof. We define $\Phi: V\left(K_{1,2 m-2} \cup K_{1,2 m(n-1)}\right) \longrightarrow \mathbb{Z}_{m} \times \mathbb{Z}_{2 n}$ by

$$
\Phi\left(V_{\alpha}\right)=\beta i: \quad \alpha=i+2 \beta n, 0 \leq \beta \leq m-1,0 \leq i \leq 2 n-1
$$

It is clear that $K_{1,2 m-2} \cup K_{1,2 m(n-1)}$, and from Subcase 2.1 of Theorem 2.1 ,
(i) If $\alpha \beta \in X_{1}$;

$$
X_{1}=\left\{\begin{array}{ccc}
\alpha \beta & : & 1 \leq \alpha \leq\left\lfloor\frac{m}{2}\right\rfloor, \beta=\{0, n\} \\
\alpha \beta & : & 0 \leq \alpha \leq \frac{1}{2}(m-1), 1 \leq \beta \leq n-1, \\
m \gamma-\alpha \beta & : & \frac{1}{2}(m+1) \leq \alpha \leq m-1,1 \leq \beta \leq n-1, \gamma=2 n .
\end{array}\right.
$$

Thus, the length $\alpha \beta$ is repeated twice in $K_{1,2 m-2} \cup K_{1,2 m(n-1)}$ and $X_{2}=\emptyset$, (ii) $\left\{r(\alpha \beta): \alpha \beta \in X_{1}\right\}=X_{1}$, then $X=X_{1}$.

Theorem 2.5 can be illustrated from the following example, let $m=3$, $n=2$, then there is a CODC of $\operatorname{Circ}(12 ; X)$ by $K_{1,4} \cup K_{1,6}$ w.r.t. $\mathbb{Z}_{3} \times \mathbb{Z}_{4}$, where $X=\{01,10,11,12,13\}$ (see Figure 5).

Let $m>1$ and $n>1$ be positive integers. Then $K_{1,4(n-1)} \cup K_{1,4(m-1)} \cup$ $K_{1,4(m-1)(n-1)}$ is the graph with the edge set: $E\left(K_{1,4(n-1)} \cup K_{1,4(m-1)} \cup\right.$ $\left.K_{1,4(m-1)(n-1)}\right)=\left\{(0 n, \delta \gamma): \delta \in\{0, m\}, \gamma \in \mathbb{Z}_{2 n} \backslash\{0, n\}\right\} \cup\{(m 0, \delta \gamma): \delta \in$ $\left.\mathbb{Z}_{2 m} \backslash\{0, m\}, \gamma \in\{0, n\}\right\} \cup\left\{(m n, \delta \gamma): \delta \in \mathbb{Z}_{2 m} \backslash\{0, m\}, \gamma \in \mathbb{Z}_{2 n} \backslash\{0, n\}\right\}$, it is easy to prove that,

$$
\left|E\left(K_{1,4(n-1)} \cup K_{1,4(m-1)} \cup K_{1,4(m-1)(n-1)}\right)\right|=4(m n-1)
$$

and

$$
\left|V\left(K_{1,4(n-1)} \cup K_{1,4(m-1)} \cup K_{1,4(m-1)(n-1)}\right)\right|=4 m n-1 .
$$

Theorem 2.6. Let $m>1$ and $n>1$ be positive integers, then there is a CODC of $\operatorname{Circ}(4 m n ; X)$ by $K_{1,4(n-1)} \cup K_{1,4(m-1)} \cup K_{1,4(m-1)(n-1)}$ w.r.t. $\mathbb{Z}_{2 m} \times \mathbb{Z}_{2 n}$.

Proof. We define $\Phi: V\left(K_{1,4(n-1)} \cup K_{1,4(m-1)} \cup K_{1,4(m-1)(n-1)}\right) \longrightarrow \mathbb{Z}_{2 m} \times \mathbb{Z}_{2 n}$ by

$$
\Phi\left(V_{\alpha}\right)=\left\{\begin{array}{rlc}
0 w & : & 0 \leq \alpha \leq 2 n-2, w=(\alpha+1) \\
\beta i & : & \alpha=i+2 \beta n-1,1 \leq \beta \leq 2 m-1,0 \leq i \leq 2 n-1
\end{array}\right.
$$

It is clear that $K_{1,4(n-1)} \cup K_{1,4(m-1)} \cup K_{1,4(m-1)(n-1)}$, and from Subcase 4.1 of Theorem 2.1.
(i) If $\alpha \beta \in X_{1}$;
$X_{1}=\left\{\begin{array}{ccc}\alpha \beta & : & \alpha \in\{0, m\}, 1 \leq \beta \leq n-1, \\ \alpha \beta & : & 1 \leq \alpha \leq m-1, \beta \in \mathbb{Z}_{2 n} .\end{array}\right.$
Then, we found that, the length $\alpha \beta$ is repeated twice in $K_{1,4(n-1)} \cup K_{1,4(m-1)} \cup$ $K_{1,4(m-1)(n-1)}$ and $X_{2}=\emptyset$,
(ii) $\left\{r(\alpha \beta): \alpha \beta \in X_{1}\right\}=X_{1}$, then $X=X_{1}$.

Theorem 2.6 can be illustrated by the following example, let $m=3, n=2$, then there is a CODC of $\operatorname{Circ}(24 ; X)$ by $K_{1,4} \cup K_{1,8} \cup K_{1,8}$ w.r.t. $\mathbb{Z}_{6} \times \mathbb{Z}_{4}$, where $X=\{01,10,11,12,13,20,21,22,23,31\}$ (see Figure 6).

Let m be a positive integer, $\operatorname{gcd}(m, 3)=1, n \geq 2, k=l+m$, and $l \in \mathbb{Z}_{m}$. Then $H_{4}^{m, n}$ is the graph with the edge set:
$E\left(H_{4}^{m, n}\right)=\left\{(0 l, 0 l+i j): i j \in Y_{1} \backslash\{00, n 0,0 \sigma, n \sigma: \sigma=2 m\}\right\} \cup\{(0 k, 0 k+$ $\left.i j): i j \in Y_{2}\right\} \cup\left\{(n w, \delta \gamma): \delta \in \mathbb{Z}_{2 n} \backslash\{0, n\}, \gamma \in\{2 l, 2(l+m)\}, w \in\{l,(l+m)\}\right\}$, where $Y_{1}=A_{1} \times A_{2}, Y_{2}=A_{1} \times A_{3}, A_{1}=\{0, n\}, A_{2}=\{l, l+2 m\}$, and $A_{3}=\{l+m, l+3 m\}$.

It is easy to prove that, $\left|E\left(H_{4}^{m, n}\right)\right|=4(m n-1)$ and $\left|V\left(H_{4}^{m, n}\right)\right|=2 m(2 n+1)$.

On Orthogonal Labelling for the Orthogonal Covering of the Circulant Graphs

Figure 6: CODC generating graph of $\operatorname{Circ}(24 ; X)$ by $K_{1,4} \cup K_{1,8} \cup K_{1,8}$ w.r.t. $\mathbb{Z}_{6} \times \mathbb{Z}_{4}$.

Figure 7: CODC generating graph of $\operatorname{Circ}(16 ; X)$ by $H_{4}^{1,2} \cong K_{2,4} \cup^{20} K_{1,4}$ w.r.t. $\mathbb{Z}_{4} \times \mathbb{Z}_{4}$.

Theorem 2.7. Let m and $n \geq 2$ be positive integers with $\operatorname{gcd}(m, 3)=1$. Then there is a CODC of $\operatorname{Circ}(8 n m ; X)$ by $H_{4}^{m, n}$ w.r.t. $\mathbb{Z}_{2 n} \times \mathbb{Z}_{4 m}$.

Proof. We define $\Phi: V\left(H_{4}^{m, n}\right) \longrightarrow \mathbb{Z}_{2 n} \times \mathbb{Z}_{4 m}$ by

$$
\Phi\left(V_{\alpha}\right)=\left\{\begin{array}{ccc}
0 \alpha & : & 0 \leq \alpha \leq 2 m-1 \\
0 \gamma & : & 2 m \leq \alpha \leq 3 m-1, \gamma=2(\alpha-m) \\
n \beta & : & 3 m \leq \alpha \leq 5 m-1, \beta=\alpha-3 m \\
2 \delta & : & 5 m \leq \alpha \leq 6 m-1, \delta=2(\alpha-4 m) \\
w \gamma & : & \alpha=i+(2 w+4) m, 1 \leq w \leq n-1, \gamma=2 i, 0 \leq i \leq 2 m-1 \\
x y & : & \alpha=i+(2 x+4) m-2 m, n+1 \leq x \leq 2 n-1, y=2 i, 0 \leq i \leq 2 m-1
\end{array}\right.
$$

It is clear that $H_{4}^{m, n}$, and from Subcase 4.1 of theorem 2.1 .
(i) If $\alpha \beta \in X_{1} ; X_{1}=\left\{\begin{array}{rcc}\alpha \beta & : & \alpha \in\{0, n\}, 1 \leq \beta \leq 2 m-1, \\ \alpha \beta & : & 1 \leq \alpha \leq n-1, \beta \in \mathbb{Z}_{4 m} .\end{array}\right.$

Then, we found that, the length $\alpha \beta$ is repeated twice in $H_{4}^{m, n}$ and $X_{2}=\emptyset$,
(ii) $\left\{r(\alpha \beta): \alpha \beta \in X_{1}\right\}=X_{1}$, then $X=X_{1}$.

Theorem 2.7 can be illustrated by the following example, let $n=2$ and $m=1$, then there is a CODC of $\operatorname{Circ}(16 ; X)$ by $H_{4}^{1,2} \cong K_{2,4} \cup^{20} K_{1,4}$ w.r.t. $\mathbb{Z}_{4} \times \mathbb{Z}_{4}$, where $X=\{01,21,10,11,12,13\}, K_{2,4} \cup^{20} K_{1,4}$ means that the two graphs $K_{2,4}$ and $K_{1,4}$ share the vertex 20(see Figure 7).

3. Conclusion

In conclusion, we got some new results for the CODCs by new graphs, where the helping tool is the cartesian product of the Abelian groups.

References

Gronau, H.-D.O.F., Mullin, R.C., and Rosa, A. (1997). Orthogonal double covers of complete graphs by trees. Graphs and Combinatorics, 13: 251-262.

Sampathkumar, R., and Srinivasan, S. (2011). Cyclic orthogonal double covers of 4-regular circulant graphs. Discrete Mathematics, 311: 2417-2422.

On Orthogonal Labelling for the Orthogonal Covering of the Circulant Graphs
El-Shanawany, R., and Shabana, H. (2014). On Orthogonal Double Covers of Circulant Graphs. British Journal of Mathematics and Computer Science, 4: 394-401.

El-Shanawany, R., Higazy, M., and El-Mesady, A. (2013). On Cartesian Products of Orthogonal Double Covers. International Journal of Mathematics and Mathematical Sciences, 2013: 265136(1-4).

Shang, Y. (2012). Random lifts of graphs: network robustness based on the Estrada index. Applied Mathematics E-Notes, 12: 53-61.

El-Shanawany, R., and El-Mesady, A. (2014). On Cartesian Products of Cyclic Orthogonal Double Covers of Circulants. Journal of Mathematics Research, 6: 118-123.

